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A Method for Surface/Surface Intersection
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A method for solving the problem of surface/surface intersection in suggested. This method
uses an adaptive subdivision and a facetted model based on triangles. A bounding box and a

different dividing method are newly developed. Instead of the calculation of the characteristic
points, a new linking technique is developed. This method solves the intersection problem

h~tween bicubic or higher grade surfaces. The desired caculation-precision is specified by the

input parameter.
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1. Introduction

Thl~ calculation of intersection curves between
surfaces is an important problem in the geometric

modeling and in CAD/CAM. Intersection curves

are used not only for graphic displays but also

with the finite element method and in the produc
tion technique, specially for the control of

roboters or CNC machines.

For the surface we use two representations:

implicit: F(x, y, z)=O

parametric: G= G( u, v).

(I)

(2)

well known (Miller, 1987; Levin, 1979; Sarraga,

1983 ; pfeiler, 1985; Sabin, 1976; Pilz, 1989; Be
yer, 1989; Farouki, 1987a). But the calculation of

intersection curves between two surfaces of higher
degrees than biquadric is not yet solved fully, in

spite of that they are used preferentially by engi

neer.
There are many attempts to solve this problem

in the world, but no perfect algorithm is

introduced. Each algorithm has several problem,
specially with the characteristic points. We can

classify following four main categories for these

attempts.

From these two representations three combina
tions are possible:

implicit + implicit : F1(x, y, z)=O,

F 2(x, y, z)=O (3)

implicit + parametric : F(x, y, z)=O,

G=G(u, v) (4)

parametric + parametric: G1 = G1(u, v),

~=~(s, [). (5)

In each case the intersection curves are the
simultaneous solution of the two surface represen
tations. Many scientific publications presently
discuss this problem. For intersection curves
between biquadric surfaces the solution is already
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1.1 Algebraic method
The initial popular method is the algebraic.

Through the use of elimination method one can
achieve the classical result. With the problem

implicit + parametric one can put the parametric
function P=P(u, v) in the implicit function:

F(x(u, v), y(u, v), z(u, v»=H(u, v)=O. (6)

This equation define the common intersection
curve. One can solve algebraic implicit function

with different methods, for example Sylvester's
resultant, Bezout-resultant etc. Or they are treated
numerically for example by a Newton-Raphson

method, that calculate the zero position of the
nonlinear equation.

If one can convert the implicit+ implicit or
parametric + parametric in the implicit + par-
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ametric, the geometric modeling will be more

simple, because then the select of representation
method is open for modeller. But these conver
sions are possible with only lower polygon

degree. For the implicit+ implicit it has been tried
to transform implicit representation in the par

ametric representation(Sederberg, 1984a ; Sederbe

rg, 1984b; Sederberg, 1985a; Sederberg, 1985b;
Sederbrg 1986a; Sederberg, 1987; Goldman,

1985; Abhyankar, 1987a; Abhyanhar, 1987b).
But the general transformation methods are not

known until now. To know the transformation
possibility, Katz has defined the "genus" with the

connection of the degree of function and the
singular point(Katz, 1988). Sederberg has present

ed two parametrization methods through the use

of baryzentric coordinate for cubic algebraic
surface(Sederberg, 1987). But the transformation

in the parametric transformation is possible in
general only for the polynom to second degree.

The transformation of parametric +parametric

to parametic+ implicit is more simple. Sederberg
has developed a general method through the use
of analytical mathematics(Sederberg, 1984a; Se

derberg, 1984b; Sederberg, 1985b). This method
make it possible to transform all rational

polynomial types. For the special case between
two curves of lower degrees this method is attrac

tive and even faster than subdivision for determin
ing the intersection points(Sederberg, 1986b). But

the algorithm for the practical implementation of
this method has not yet been developed. The

difficulties lie in the geometrical complex. The
order of the implicit representation of a par

ametric surface is 2mn in general. The order of
the resulting intersection curve between two par

ametric surfaces is 4m1m2n1n2, for example two
bicubic surfaces yield a polynomial of degree
324(Sederberg, 1985a; Chandru, 1987). A numer
ical handling of this method is in general great
problematical except some special cases. Two new
algebraic method are recently developed for the
problem implicit + implicit. Garity has introduced
the mapping approachs(Garrity, 1989). This

method minimize the number of the variables as
far as possible, but raise the algebraic degree. In
contrast to it, Hoffmann has tried the "geometri-

cal approach"(Hoffmann, 1990). This method
minimize the algebric degree, but raise the num

ber of the variables.

1.2 Lattice evaluation
The lattice method evaluate a(or two) surface

function on a parameter-mesh, creating a matrix

of points Pij. The found points define the edges or
polygons with the connection of each other. The

intersection problem surface +surface is changed

by it in a series of intersection problem plane/
plane or plane/surface. The calculation of inter

section points is now linear and relative fast. The
calculated intersection points are refined by differ

ent methods as for example Newton-Raphson

iteration. Lattice evaluation is often used for the
calculation contouring and surface-rendering
(Griffiths, 1975; Evans, 1987; Mclain, 1974;

Petersen, 1984 ; Petersen, 1987; Petrie, 1987;

Satterfield, 1985; Shantz, 1988; Hartwig, 1983),
or as preprocessor for the marching-and

subdivision-algorithm. The parameter evaluation

fix one of four surface parameter in regular or
irregular step(Rossignac, 1987). Therewith three

nonlinear equations with three unknowns exist
for each this value. The calculation is executed
through numerical methods, for example through

Newton-Raphson iteration, special algebraic
methods(Hoschek, 1987) or through conversion

of polynombasis(Hoschek, 1989; Hoschek, 1990).
The parameter evaluation is often used as pre

processor for marching.

Complete intersection curve is generated thr
ough the linking and interpolation between calcu
lated points. This lattice evaluation does not

require so good start point as marching, but the

completeness of the solution depends on the eval
uation step. A gross step can cause the miss of the
small close intersection curves or contact points.
But the small step has efficiency trouble due to
gross data volume. There are some adaptive lat
tice evaluation methods for the reduce of neces
sary data volume(Shantz, 1988; Hoschek, 1989;
Hoschek, 1990).

1.3 Marching
The marching method develops the point series
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of intlersection curve step by step. Each intersec
tion l;urve require start points and the local
direction-vector. For the local direction-vector
curvature anlysis(Faux, 1981 ; Chen, 1988), local

explicit power-series(de Montaudouin, 1986; Far

ouki, 1987b; Hoffmann, 1987; Bajaj, 1988), and a
orthogonal projection( Kriezis, 1990b) have been

used. Someones have developed the local differen
tial geometry for the problem implicit + im
plicit(Phillips, 1984; Asteasu, 1988). Cheng has

used a vector-field for the tracing(Cheng, 1988).

A difliculty with this method is it, to find out start
points as good as possible. Sometimes lattice

evaluation is used for that and after that a
Newton-Raphson iteration is used. Another difli

culty is it, to select the proper step length. Un

proper step length can cause endless loop with
tightly locating intersection curves(Geisow, 1983).

An important disadvantage of marching method

appears on the singular points. On a singular
point there are three possibility for the further

tracing. Bajaj has proposed a desingularization

method based on birational transformation( Bajaj,
1988) This method solves singular problem in
case of implicit+ parametric. Barnhill has devel

oped a general marching-method( Barnhi II, 1987 ;
Barnhill, 1990). This method need only one pro

cedune that can evaluate the coordinate-value and

the local gradient for a given parameter. For the
start points he has used lattice evaluation, sub
division and Newton-Rapson iteration at the

same time. For the tracing he has used the charac
ter of intersection curve, that the tangent-vectors

of two surfaces are same on the intersection curve.
But this method converges slowly at singular
points(Muellenheim, 1990).

1.4 Subdivision
Th.: basic idea with the subdivision is the

dividing of original problems, until a simple
method exists to solve it(Kriezis, 1990a; Kriezis,
1990b; Lane, 1980; Catmull, 1978; Sabin, 1978;
Koparkar, 1983; Koparkar, 1986; Peng, 1984;
Dokken, 1985; Houghton, 1985; Lasser, 1986; L
i, 1988; Lee, 1984; Carson, 1982; Casale, 1987;
Casa(,e, 1989). Recursive subdivision-technique
for the intersection curves is based on the para-

digm of "divide-and-conquer"(Pratt, 1986). A
divide-and-conquer algorithm for surfaces divides

the boundary of each surface in appropriate
surface-segments, eliminates then the segments

except in a possible boundary and the remaining
segments are divided once more. This procedure

is continued until only segments within necessary

tolerence are left. They describe thl: intersection
curve exact enough. Generally a bounding box is

used for the elimination, such as fat
arcs(Sederberg, 1989), min max bounding box

and retangular bounding box(Houghton, 1985),
convex hull.

Subdivision algorithms are mainly applid to
calculate the intersection curve between two par

ametric surfaces(Peng, 1984; Dokken, 1985; Hou
ghton, 1985; Lasser, 1986; Lee, 1984; Carson,

1982; Casale, 1987). But they are also extended
for the implicit + implicit(Owen, 1987) and

implicit + parametric(Patrikalarkis, 1990 ; Pra
kash, 1988 ; Kriezis, 1990b). Sometimes this exten

sion is possible through convert of representation

of algebraic curve in a Bernstein-basis within a
retangular domain(Geisow, 1983; Sederberg,
1984c; Patrikalakis, 1989). A technique for

adaptive step was introduced for the irregular
refinement(Lyche, 1985). Finally a linking proce

dure follows it, in order to construct the complete

intersection curve from the points found.

1.5 Additional remark
In this work a method is introduced with which

we can find the intersection curves between two
parametric surfaces( parametric + parametric),

such as B-spline surfaces or Bezier surfaces, of
arbitrary degrees. This method solves intersection

problem fully. This method uses an adaptive
subdivision and a facetted model based on tri

angles.
A refinement of the parameter is used in order

to achieve a global precision of the curves. A
bounding box and a different dividing are newly
developed. Instead of the calculation of the char
acteristic points a new linking technique is devel
oped.

We can see that each category has several
self-problems. Therefore many hybrid algorithms
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are tried without sucess. There is no general
example to show intersection lines between sur

faces of higher degrees than biquadric, specially
with the characteristic points. For the first time
this algorithm shows that.

2. Problem Statements
ioeal cUr"'ve

3. Solution Method

F(u, v, s, t)=P(u, v)-Q(s, tl=O. (8)

We can derive three equations, each based on
one coordinate:

P=P(u, v) and Q=Q(s, tl· (7)

Then the intersection curves are defined:

Fig. 1 Local and global precision

3.2 Model
As input for this intersection method two par

ametric surface representations and their models

are required.The parametric surface representa
tion is a mathematical description of points,
which make up the surfaces. A facetted model, in
which the relation between points and polygons is

saved, is used here. Evaluated lattice points are
termed "explicit points". The points, which are
the components of surfaces, but are not discret
ized for the present, are called "implicit points".
These points will be calculated later with require

ments from the parametric surface representation.

For this intersection method two quadrangle

to the evaluated point, we call here "local preci
sion". But in this case the distance from the other

points to the ideal curve are ignored. Figure I

explains the difference between local and global
precision.

Usually subdivision algorithms calculate rela
tively few intersection points. An improvement

process such as the Newton-Raphson method

follows to obtain the precision of each intersec

tion point. The entire intersection curves are then
created through linear linking or interpolation

between intersection points. But this approach
can guarantee only the local precision.

In this work a subdivision algorithm is devel

oped guaranteeing the global precision up to a

specified limit. The global precision is very
important for industrial applications. In order to
reach the global precision a lot of intersection

points are necessary so that the entire intersection

curve can be determined within a specified limit.

A fine refinement approach used in this work is
reliable for that goal.

(9)

( 10)

(II)

PAu, v)-QAs, tl=O
P)u, v)-Q)s, tl=O
PAu, v)- QAs, tl=O.

Suppose, x=(x, y, z) is a vector of coordinates
in three dimensional space and u = (u, v) is a
vector in the two dimensional parameter space.

Then x = x( u) defines a two dimensional geomet

ric object in three dimensional space: each of the
three components of x is a function of the two
parameters of u.
Two parametric surfaces are defined:

One can derive the solution for the four parame
ters with these three equations. It remains an

independent parameter which defines the curves,
because the curves posess one degree of freedom.

But it is difficult, sometimes impossible, to elimi
nate three parameters. An analytic form for the

intersection curve can be determined only in case
of a low grade.

3.1 Strategy
If we consider a calculated intersection seg

ment, there is always a minimal distance from the
each point on the calculated intersection curve to
the ideal curve, and vice versa. Ideal curve means
here the curve that is mathematically exactly
calculated, if we can. The maximum of this mini
mal distances is the maximal distance between
two curves, we call here "global precision".

With the minimal distance from the ideal curve
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Fig.;! Maximal angle and distance

grids of explicit points are necessary in the input

phase. But triangles are used internal which can
be generated easily from the quadrangles.

In general the difficulty with the calculation of
interse:ction curves between two free form surfaces

is caused from that the free-form surfaces some

times have many geometric odd form. If the user
has the possibility that informs the geometric
specialties of his odd objects to the algorithm, the

calculaton will be very flexible. Among the many

geometric specialties the developed algorithm
uses one criterion, curvature, through the use of
following model:

At least one explicit point must be discretized

in the: area of critical curvature, if the angle

between any gradient on a curve of the object and

the approximating triangle exceeds 62 degree.
Thi" model gives us the interesting characteris

tic that the length of the larger edge of a triangle

with any further refinement is always larger than

the distance between the approximating triangle
and the real surface. Figure 2 explains this. If the
distance is larger than the largest edge, the angle
must be larger than 62.345(arctan(2.)=62.345°).

The user determines himself the approximating
model of his objects. This gives him the possibil
ity to inform the special curvature of his objects
to the algorithm. In normal there is no special
curvature with the grater than 62.345° in free-form

surfaoe. A constructor who generates the par-

ametric surface for a object, knows the geometric
form of this object exactly. Even if anyone uses
the generated parametric surfaces. he has to have
a certain conception on the geometric form of
these surfaces. Therefore it is not difficult for him

to discretize his object for the upper model. If one
neglect to satisfy upper model requirement. this
method could miss small intersection loop.

3.3 Refinement procedure
A subdivision algorithm consists of three parts.

namely the refinement procedure. the calculation
procedure, and the linking procedure. The first

procedure. the refinement procedure. reduces the
pending patch sets. For reducing the pending

patch set two processes are used. One is dividing.
which divides pending boundary in many subpat

ch sets and the other is elimination. which elimi
nates the subpatchs with no intersection. Each
step of refinement reduces the pending area
through the elimination process.

The refinement procedure functions very

similary as a searching procedure. In the univar

iate case there are some searching procedures,
such as the halving of the paramel:er values or
gold section search. Here is not one variable but

two variables in two surfaces. Then:fore not one

interval but two surfaces are reduced with each
refinement step. The refinement procedure con

verges to the intersection curve up to specified

limit. The ideal case is the reduction of two
surfaces until only the simultaneous curves

remain. Figure 3 shows an example for that.

A dividing of entire surface will increase the
amount of data exponentially. Therefore the

adaptive refinement approach thaI: refines the

pending boundary step by step is use:d. After each
refinement step the elimination follows. The elim
ination process makes sure that the areas with no
intersection are found and eliminated. Instead of
the computation of the intersection between two
patches, a check for intersection between two

bounding boxes is performed. The use of a bound
ing box avoides complex computations and
improves the efficiency of the computation. A
newly developed bounding box allows for an
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Fig. 4 Bounding box for the surface Q(s, t)

Fig. 5 Bounding box for the surface P(u, v)

refinement procedure. But those of P(u, v) are

constructed just after transformation. The normal

vector for special expansion after the transforma

tion is parallel to a coordinate axis. Therefore the

calculation of the normal vector for the bounding

box with P( u, v) is not needed. But the bounding

box with P(u, v), as shown in Fig. 5, is not a

prism but a quader. One can test very simple the

intersection possibility with minimax values of

three coordinates of a quader, such as the mini
max bounding box.

The transformation is used here and simplifies

the calculation. The transformation is executed

for all triangles of P( u, v). At the beginning of

the transformation the coordinate origin is placed

at an end point of a triangle. A coordinate axis is

put along an edge of the triangle. Finally the

coordinate system is rotated around the fixed axis,

adaptive subdivision with less data produced than

normally expected.

The refinement steps will continue until finally

only subpatches remain within the scope of speci

fied limit. This procedure is controled by the

segment length, input I. The desired global preci

sion, namely the allowable error of the calcula

tion is specified by the input I. Input I represents

an upper bound for the segment length, namely

this procedure is interrupted, if the segment length

is smaller than the input I. The input I is assumed

here as relatively small. With relatively small

inputl this method will have more advantages

than older methods.

Fig. 3 An example for the refinement procedure

3.4 Bounding box
A bounding box is in general defined such that

it can contain the entire concerning subpatch.

Here a new bounding box is developed. For its

construction directly evaluated points from the

representation are used. An expansion, which

corresponds to the length of largest edge, follows

in both normal directions.

All bounding boxes of Q(s, n, as shown in

Fig. 4, are constructed at the beginning of the
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until a zero-plane of one coordinate reaches the

third point. Here the x-coordinate is selected

arbitrarily as zero-plane. Figure 6 shows this

process. This process is performed simply with

help of a 4 x 4 matrix and homogeneous coordi

nates

3.5 Different dividing
To reduce the temporary data sIze different

dividings are used according to the type of critical

set. Two critical sets are distinguished: "direct

critical sets" and "potential critical sets". The

direct critical set are the subpatches, that can be

selected as intersection subpatches through com

parison with two triangles without the help of

bounding boxes. The potential critical set are the

subpatches, that can be selected as intersection

subpatches additionally considering the each of

precision, namely through the use of the bound

ing box. As explained in Fig. 6, the base triangle

lies in the plane x =constant after the transforma
tions.

Q(s, t) is transformed on the basis of the

model of P( u, v). After each transformation the

( 12)

x~coordinate is zero. If an intersection point is

found between two end points i, j of the models

of Q(s. t) the following condition must be met:

This can be tested simply with the signs. Only

with different signs or with z.ero this condition is

met. Each triangle of the model of the surface Q

(s. t) is tested with two edgt~s for the possiblity of

intersection. Two tests are sufficient, to test the

possibility of intersection with a triangle. The test

of the remaining edge is redundant. In this man

ner the direct critical set is defined. The remaining

area is defined automatically as the potential

intersection area. Both intersection areas are

divided differently, namely the direct intersection

area is divided by four(2 x 2) and the potential

intersection area by nine(3 x 3). This speeds up

the entire process.

3.6 Calculation procedure
After the refinement procedure there are two

critical patch sets for two models. They are

already refined up to the global precision. The

fine refi nement approach simplifies the calcula

tion procedure because inspite of linear calcula

tion the precision of intersection curves is guaran
teed.

To find the direct intersection area transforma

tions are also used here. After the transformations

the x·coordinates of both end pOInts of an edge

are observed. If they differ in sign. they lie on

different sides of the base triangle In these cases

the intersection poi nt is calculated proportion

ally. The calculated data for each point, namely

three euclidic coordinates and four parameter

values, are saved in the data structure. Addition

ally the numbers of both triangles are saved, in

order to help the procedure of linking. Finally it

is tested for all intersection points, whether the

same points appear frequently. because the same

line in two neighbouring triangles constitutes an
edge twice.

As a result of the procedure of calculation so

many intersection points are obtained that the

intersection curves can be represented rather

exact. Normally the data siz.e is not so large that

3) y

t·SJ,
/z

yz-plo.ne

z

t~.~_ ,
z

J--x
Result

y

h

Ax
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Fig. ti Transformation process
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(14)

(15)

(16)

Fig. 7 Connection of connection angle

there is a problem with the data management. For
example, with a length of the intersection curve of

10 m one can constitute it with 10000 intersection
points in a distance of I mm. This process has no
problem to current data management system.

3.7 Linking procedure

The intersectionm points are not determined in

a continuous sequence. Therefore a linking proce
dure is necessary for the intersection method.

After the linking procedure the intersection points
are connected each other direct linear.

The connection angle is the angle between two

connecting intersection lines. For example the
connection angle in Fig. 7 is :

tI=arccos(LI *V/ILII * IVi). (13)

This procedure is controlled by two input param

eters : input2 and input3. The second step of

refinement will begin, if the connection angle is
bigger than input2 and the distance from starting

point is larger than input3. The second step of

refinement ends, if the connection angle is smaller
than input2 or the distance is shorter than input3.

Here is input3 < input!. In order to prevent an
endless loop, input3 and input4 are used. Input3

and input4 respectly form a lower bound. If the
distance remains below input3, the refinement is

stopped. If the distance remains below input4, the
linking will follow without the test of the connec
tion angle.

The test of connection angle gives us the possi
bility, to find out a few characteristic points, as
cusp or singular points, because these points are
very sensitive with regard to connection angle.
This fact is very important for the calculation of
exact intersection curve.

3.8 Characteristic points
Here the cases of characteristic points are ex-

singular point

I

j)~~:~
~~

Fig. 8 Linking for singular point

Fig. 9 Linking for cusp

plained. In this work it is not tried, to find the
characteristic points in advance, instead they are

found automatically and approximately. This
approximation can not reflect the real topology of

the intersection curve, but it can approximate

them within a given tolerance. In a special area it
is refined further up to the tolerance. If neverth

less the linking is not sucessful, a characteristic

point is supposed there.
Figure 8 explains the case of singular points. By

Eq.(l3)

tlf=BA *AF/IBAI * IAFI
tle=BA *AC/IBAI * IACI
tid = BA *AD/IBAI * IADI·

Suppose, 8e and tid are larger than input2, but
tlf is smaller than input2. The next point from

point A is searched. Point C is selected first,
because it has a permissble distance according to

inputl from point A and lies before point D in
the temporary table of intersection points. But the
test of the connection angle disqualifies it as a
next point. The points are tested in succession.

The test of the connection angle remains unsuc
cessful to D. But finally F is taken as next point,
saved and removed from the temporary table.

Therefore there is no problem with singular
points.

With Fig. 9 the case of cusp is explained. The
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(a) After the refinement (b) After the connection

(c) Intersection curve

Fig. 10 Bicubic-bicubic, 95 intersection points

next point from starting point A is searched.

Point B is taken as a candidate in the search
process, but fails the test of the connection angle.

The search process finds then no more candidate.
Therefore it is refined further in this area. After

successful calculation there are two new intersec

tion points C and D. With the searching of the
next point D is taken new intersection point. Now
the starting point moves to point D. With point D
exactly the same problem as before exist, to search
the next point. Then it is refined again. This
process is repeated until the segment length
reach4~s input3. This process refines the critical
patch set with a cusp exact sufficiently. The case
of turning points is similar to the cusp.

4. Results and Discussion

Seven examples( Fig. (10) - (16)) are presented

here. They show the application of this algorithm

for the intersection problem between bicubic or
higher grade surfaces. Here nonuniform rational

B-spline surfaces(NURBS) are used. Intersection
points are marked with" +".

The pictures of Fig. 10 represent a simple
normal case of intersection between two bicubic
parametric surfaces. Figure lO(a) shows the poly

gons after the refinemet. The area that the poly
gons are concentrated means that many refine
ment steps are executed. Normally the polygons
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are concentrated along the intersection line. Fig

ure lO(b) adds the intersection line to Fig. lO(a)

95 intersection points are calculated and linear

connected. Figure lO(c) shows only the intersec-

(a) Intersection curve

(b) Enlargement: view I

(c) Enlargement: view 2

Fig. 11 Bicubic-bicubic, 456 intersection points

tion line.

The pictures of Fig.11 show the more compli

cated case of intersection between two bicubic

parametric surfaces. Two conic figures are

selected, because the intersection problem

between them give us special difficulties so as the

turning points, singular points and cusps. 456

intersection points are calculated and the grate

number of intersection points means indirectly

that many refinement steps are executed. Figure

II (a) shows the intersection line, Fig. 11 (b) the

enlargement and Fig. II(c) the enlargement of
another sight.

The pictures of Fig. 12 show the general case of

intersection between two biquintic parametric

surfaces. Two intersection lines are calculated

with 251 intersection points. Two views of differ
ent sights are shown.

(a) View I

(b) View 2

Fig. 12 Bicubic-biquintic, 251 intersection points
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(a) Intersection curve (b) Enlargement

Fig. 13 Bicubic-bicubic, 616 intersection points

(a) View (b) View 2

Fig. 14 Torus-plain, bicubic-bicubic, truning points,
501 intersection points

The pictures of Fig. 13 show two intersection
lines with two singular points between two conic

figures. Two bicubic parameter surfaces are used
and 616 intersection points are calculated.

The pictures of Figs. (14)-(16) show the char
acterisric points. To show the characteristic points
evidently the special figures are selected intention

ally. The pictures show the intersection between
torus and plain, bicubic-bicubic.

Normally the data size is the important prob
lem of subdivision. To reduce data size this
algorithm uses the adaptive subdivision and dif
ferent dividing. Neverthless there are often the

same problem with the small precision. Together

with the development of computer science this
problem will be solved.

5. Conclusions

A method for sloving the problem of surface/
surface intersection is suggested. This method can
solve the intersection problem between bicubic or

higher grade surfaces exactly. This method uses
an adptive subdivision and a fac{~tted model

based on triangles. A bounding box and a differ
ent dividing method are newly developed. Instead
of the calculation of the characteristic points, a
new linking technique is developed.
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(a} View I

(b) View 2

(c) Enlargement

Fig. 15 Torus-plain, bicubic-bicubic, singular points,

214 intersection points

(a) View I

(b) View 2
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(c) Enlargement

Fig. 16 Torus-plain, bicubic-bicubic, cusp 310 inter

section points
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Appendix

Algorithm
Following abbreviations are used in algorithm:
PP : current triangle of P( u, v)
PQ : current triangle of Q(s, t)

TS : temporary table of intersection points
NSP : the number of intersection point in the

TS
VI : vector from the last point to starting

point

V2 : vector from starting point to current

point
The algorithm uses following input-and output
- parameter :
vertp : point table of model of P( u, v)

vertq : point table of model of Q(s, t)

facep : polygon table of model of P( u, v)

faceq : polygon table of model of Q(s, t)

fdp : table of coefficients and control points of

P(u, v)

fdq : table of coefficients and control points of
Q(s, t)

vtp : point table of pending patch set of P( u,
v)

vtq : point table of pending patch set of Q(s,
t)

fcp : triangle table of pending patch set of p
(u, v)

fcq : triangle table of pending patch set of Q(s,
t)

sch : TS
link : linking table of intersection curves.

Procedure: Refinement(vertp, vertq, facep,
faceq, fdp, fdq, inputl, vtp, vtq, fcp,
fcq)

Make the triangular grids from facep and faceq
While: : refinement request(exist triangles in fcp

and fcq, whose maximal edge length has
larger than input I)

for: all triangles of Q(s, t)

construct bounding box
endfor
for: all triangles of P( u, v)

Transform PP

Construct bounding box
MKP=maximal edge length of PP
for: all triangles of Q(s, t)

Transform bounding box of on the basis of

PP
Compare two bounding boxes of PP and

PQ
if(intersected) then

MKQ = maximal edge length of PQ
if(MKP< input!) then

Save data of PQ
else

Save the number of PO
endif

endif
endfor
if(intersected) then

if(MKP< input!) then
Save data of PP

else

Save the number of PP
endif

endif
endfor
Test, whether the one triangle appears only one
times in pending subpatch sets and in this case
only one of them is remained and the others are
removed.
Subdivide the direct critical set with 9 and save
the generated data
Subdivide the potential critical se:t with 4 and
save the generated data
Define the new critical(pending) patch sets

endwhile
endprocedure

Procedure: Calculation(vtp, vtq, fcp, fcq, sch)
for: all triangles of P( u, v)

Transform PP
for: all triangles of Q(s, t)

Transform PQ on the basis of PP
if(direct critical set) then

calculate the intersection point and save in

-TS
endif

endfor
endfor
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Test, whether the one point appears only one
times.

endprocedure

Procedure: Linking(vtp, vtq, fcp, fcq, sch, fdp,
fdq, inputl, input2, input3, input4, link)

while: NSP >0
if(first point) then

Define new intersection curve

Select the starting point
Remove the starting point from the TS

elseif(second point) then

Select the second point
Calculate V2

Link to the second point
Starting point=second point

VI=V2
second point is removed from TS and saved

in the link table

else

for; all intersection points in TS
Set default value in O(mxl, mx2, nl, n2)
Define the distance

if(distance<input I) then

Calculate V2 and connection angle
if(connection angle< input2) then

if(first times) then

mxl=distance, nl=current point

else
if(distance < mx I) then

mx I =distance, nl = current point
endif

endif
else

if(the first times) then

mx2=ditance, n2=current point
else

if(distance< mx2) then
mx2=distance, n2=current point

endif
endif

endif
endif

endfor
if(mx2<input4) then

Link to n2
Starting point=n2

VI=V2
n2 is removed from the TS and saved in the

link table

endif
if(n I exist) then

Link to nl

Starting point=nl

VI=V2
n I is removed from the TS and saved in the

link table

else
Subdivide following two areas with n2

I. Parameter area between two intersec
tion points

2. The triangles, which the both

points(starting point and current point)
are produced by the intersection of each

other, that is two triangles of P(u, v)

and two triangles of Q(5, t)

for: all triangles generated by the subdivi

sion in P(u, v)

MKP=maximal edge length of PP
if(MKP > input3) then

Transform PP

for; all triangle generated by the sub

division in Q(5, t)

MKQ = maximal edge length of PQ
if(MKQ >input3) then

Transform PQ on the basis of PP
Calculate the new intersection point

in the direct critical set and save in

the TS
endif

endfor
endif

endfor

Test, whether the same point appears two
times and in this case one of them is
removed.

endif
if(no new intersection point are found through
the subdivision) then

Define new intersection curve
endif

endif
endwhile
endprocedure
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